Predicting metabolic syndrome using decision tree and support vector machine methods

نویسندگان

  • Farzaneh Karimi-Alavijeh
  • Saeed Jalili
  • Masoumeh Sadeghi
چکیده

BACKGROUND Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. METHODS This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. RESULTS SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. CONCLUSION The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

بررسی کارایی مدل‏های هوشمند در برآورد رسوبات معلق رودخانه‏ای (مطالعه موردی: حوزه‏ آبخیز باباامان، خراسان شمالی)

Accurate estimation of the sediment volume carried by the rivers is important in water related projects and recognition and suggestion proper methods for estimating suspended sediment goals which should be conducted by related researches. Among the methods that have been recently used to model suspended sediment, machine learning based methods such as decision trees, support vector machine, and...

متن کامل

Using data mining techniques for predicting the survival rate of breast cancer patients: a review article

    This review was conducted between December 2018 and March 2019 at Isfahan University of Medical Sciences. A review of various studies revealed what data mining techniques to predict the probability of survival, what risk factors for these predictions, what criteria for evaluating data mining techniques, and finally what data sources for it have been used to predict the surv...

متن کامل

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

Toward a Thorough Approach to Predicting Klinkenberg Permeability in a Tight Gas Reservoir: A Comparative Study

Klinkenberg permeability is an important parameter in tight gas reservoirs. There are conventional methods for determining it, but these methods depend on core permeability. Cores are few in number, but well logs are usually accessible for all wells and provide continuous information. In this regard, regression methods have been used to achieve reliable relations between log readings and Klinke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016